Metamath Proof Explorer


Table of Contents - 1.2.5. Logical equivalence

Definition df-bi in this section is our first definition, which introduces and defines the biconditional connective used to denote logical equivalence. We define a wff of the form as an abbreviation for .

Unlike most traditional developments, we have chosen not to have a separate symbol such as "Df." to mean "is defined as". Instead, we will later use the biconditional connective for this purpose (df-an is its first use), as it allows us to use logic to manipulate definitions directly. This greatly simplifies many proofs since it eliminates the need for a separate mechanism for introducing and eliminating definitions.

A note on definitions: definitions are required to be eliminable (that is, a theorem stated in terms of the defined symbol can also be stated without it) and conservative (that is, a theorem whose statement does not contain the defined symbol can be proved without using that definition). This means that a definition does not increase the expressive power nor the deductive power, respectively, of a theory. On the other hand, definitions are often useful to write shorter proofs, so in (i)set.mm we will generally not try to avoid them. This is why, for instance, some theorems which do not contain disjunction in their statement are placed after the section on disjunction because a shorter proof using disjunction is possible.

  1. wb
  2. df-bi
  3. impbi
  4. impbii
  5. impbidd
  6. impbid21d
  7. impbid
  8. dfbi1
  9. dfbi1ALT
  10. biimp
  11. biimpi
  12. sylbi
  13. sylib
  14. sylbb
  15. biimpr
  16. bicom1
  17. bicom
  18. bicomd
  19. bicomi
  20. impbid1
  21. impbid2
  22. impcon4bid
  23. biimpri
  24. biimpd
  25. mpbi
  26. mpbir
  27. mpbid
  28. mpbii
  29. sylibr
  30. sylbir
  31. sylbbr
  32. sylbb1
  33. sylbb2
  34. sylibd
  35. sylbid
  36. mpbidi
  37. syl5bi
  38. syl5bir
  39. syl5ib
  40. syl5ibcom
  41. syl5ibr
  42. syl5ibrcom
  43. biimprd
  44. biimpcd
  45. biimprcd
  46. syl6ib
  47. syl6ibr
  48. syl6bi
  49. syl6bir
  50. syl7bi
  51. syl8ib
  52. mpbird
  53. mpbiri
  54. sylibrd
  55. sylbird
  56. biid
  57. biidd
  58. pm5.1im
  59. 2th
  60. 2thd
  61. monothetic
  62. ibi
  63. ibir
  64. ibd
  65. pm5.74
  66. pm5.74i
  67. pm5.74ri
  68. pm5.74d
  69. pm5.74rd
  70. bitri
  71. bitr2i
  72. bitr3i
  73. bitr4i
  74. bitrd
  75. bitr2d
  76. bitr3d
  77. bitr4d
  78. bitrid
  79. syl5bb
  80. bitr2id
  81. bitr3id
  82. bitr3di
  83. bitrdi
  84. bitr2di
  85. bitr4di
  86. bitr4id
  87. 3imtr3i
  88. 3imtr4i
  89. 3imtr3d
  90. 3imtr4d
  91. 3imtr3g
  92. 3imtr4g
  93. 3bitri
  94. 3bitrri
  95. 3bitr2i
  96. 3bitr2ri
  97. 3bitr3i
  98. 3bitr3ri
  99. 3bitr4i
  100. 3bitr4ri
  101. 3bitrd
  102. 3bitrrd
  103. 3bitr2d
  104. 3bitr2rd
  105. 3bitr3d
  106. 3bitr3rd
  107. 3bitr4d
  108. 3bitr4rd
  109. 3bitr3g
  110. 3bitr4g
  111. notnotb
  112. con34b
  113. con4bid
  114. notbid
  115. notbi
  116. notbii
  117. con4bii
  118. mtbi
  119. mtbir
  120. mtbid
  121. mtbird
  122. mtbii
  123. mtbiri
  124. sylnib
  125. sylnibr
  126. sylnbi
  127. sylnbir
  128. xchnxbi
  129. xchnxbir
  130. xchbinx
  131. xchbinxr
  132. imbi2i
  133. jcndOLD
  134. bibi2i
  135. bibi1i
  136. bibi12i
  137. imbi2d
  138. imbi1d
  139. bibi2d
  140. bibi1d
  141. imbi12d
  142. bibi12d
  143. imbi12
  144. imbi1
  145. imbi2
  146. imbi1i
  147. imbi12i
  148. bibi1
  149. bitr3
  150. con2bi
  151. con2bid
  152. con1bid
  153. con1bii
  154. con2bii
  155. con1b
  156. con2b
  157. biimt
  158. pm5.5
  159. a1bi
  160. mt2bi
  161. mtt
  162. imnot
  163. pm5.501
  164. ibib
  165. ibibr
  166. tbt
  167. nbn2
  168. bibif
  169. nbn
  170. nbn3
  171. pm5.21im
  172. 2false
  173. 2falsed
  174. 2falsedOLD
  175. pm5.21ni
  176. pm5.21nii
  177. pm5.21ndd
  178. bija
  179. pm5.18
  180. xor3
  181. nbbn
  182. biass
  183. biluk
  184. pm5.19
  185. bi2.04
  186. pm5.4
  187. imdi
  188. pm5.41
  189. pm4.8
  190. pm4.81
  191. imim21b