Metamath Proof Explorer
Description: More general version of 3bitr4i . Useful for converting definitions
in a formula. (Contributed by NM, 11-May-1993)
|
|
Ref |
Expression |
|
Hypotheses |
3bitr4g.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
3bitr4g.2 |
⊢ ( 𝜃 ↔ 𝜓 ) |
|
|
3bitr4g.3 |
⊢ ( 𝜏 ↔ 𝜒 ) |
|
Assertion |
3bitr4g |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
3bitr4g.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
3bitr4g.2 |
⊢ ( 𝜃 ↔ 𝜓 ) |
3 |
|
3bitr4g.3 |
⊢ ( 𝜏 ↔ 𝜒 ) |
4 |
2 1
|
syl5bb |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) ) |
5 |
4 3
|
bitr4di |
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) ) |