Metamath Proof Explorer


Theorem sylbir

Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylbir.1 ( 𝜓𝜑 )
sylbir.2 ( 𝜓𝜒 )
Assertion sylbir ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 sylbir.1 ( 𝜓𝜑 )
2 sylbir.2 ( 𝜓𝜒 )
3 1 biimpri ( 𝜑𝜓 )
4 3 2 syl ( 𝜑𝜒 )