Metamath Proof Explorer


Theorem sylbir

Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylbir.1
|- ( ps <-> ph )
sylbir.2
|- ( ps -> ch )
Assertion sylbir
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 sylbir.1
 |-  ( ps <-> ph )
2 sylbir.2
 |-  ( ps -> ch )
3 1 biimpri
 |-  ( ph -> ps )
4 3 2 syl
 |-  ( ph -> ch )