Metamath Proof Explorer


Theorem sylib

Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylib.1 ( 𝜑𝜓 )
sylib.2 ( 𝜓𝜒 )
Assertion sylib ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 sylib.1 ( 𝜑𝜓 )
2 sylib.2 ( 𝜓𝜒 )
3 2 biimpi ( 𝜓𝜒 )
4 1 3 syl ( 𝜑𝜒 )