Metamath Proof Explorer


Theorem sylib

Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylib.1 φψ
sylib.2 ψχ
Assertion sylib φχ

Proof

Step Hyp Ref Expression
1 sylib.1 φψ
2 sylib.2 ψχ
3 2 biimpi ψχ
4 1 3 syl φχ