Metamath Proof Explorer


Theorem sylib

Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylib.1 φ ψ
sylib.2 ψ χ
Assertion sylib φ χ

Proof

Step Hyp Ref Expression
1 sylib.1 φ ψ
2 sylib.2 ψ χ
3 2 biimpi ψ χ
4 1 3 syl φ χ