Metamath Proof Explorer


Theorem sylbb

Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019)

Ref Expression
Hypotheses sylbb.1 φψ
sylbb.2 ψχ
Assertion sylbb φχ

Proof

Step Hyp Ref Expression
1 sylbb.1 φψ
2 sylbb.2 ψχ
3 2 biimpi ψχ
4 1 3 sylbi φχ