Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Metamath Proof Explorer
Table of Contents - 1.2. Propositional calculus
Propositional calculus deals with general truths about well-formed formulas
(wffs) regardless of how they are constructed. The simplest propositional
truth is , which can be read "if something is true, then it
is true" - rather trivial and obvious, but nonetheless it must be proved from
the axioms (see Theorem id ).
Our system of propositional calculus consists of three basic axioms and
another axiom that defines the modus-ponens inference rule. It is attributed
to Jan Lukasiewicz (pronounced woo-kah-SHAY-vitch) and was popularized by
Alonzo Church, who called it system P2. (Thanks to Ted Ulrich for this
information.) These axioms are ax-1 , ax-2 , ax-3 , and (for modus
ponens) ax-mp . Some closely followed texts include [Margaris ] for the
axioms and [WhiteheadRussell ] for the theorems.
The propositional calculus used here is the classical system widely used by
mathematicians. In particular, this logic system accepts the "law of the
excluded middle" as proven in exmid , which says that a logical statement
is either true or not true. This is an essential distinction of classical
logic and is not a theorem of intuitionistic logic.
All 194 axioms, definitions, and theorems for propositional calculus in
Principia Mathematica (specifically *1.2 through *5.75) are axioms or
formally proven. See the Bibliographic Cross-References at mmbiblio.html for a complete cross-reference from sources used to its formalization in the
Metamath Proof Explorer.
Recursively define primitive wffs for propositional calculus
wn
wi
The axioms of propositional calculus
ax-mp
ax-1
ax-2
ax-3
Logical implication
mp2
mp2b
a1i
2a1i
mp1i
a2i
mpd
imim2i
syl
3syl
4syl
mpi
mpisyl
id
idALT
idd
a1d
2a1d
a1i13
2a1
a2d
sylcom
syl5com
com12
syl11
syl5
syl6
syl56
syl6com
mpcom
syli
syl2im
syl2imc
pm2.27
mpdd
mpid
mpdi
mpii
syld
syldc
mp2d
a1dd
2a1dd
pm2.43i
pm2.43d
pm2.43a
pm2.43b
pm2.43
imim2d
imim2
embantd
3syld
sylsyld
imim12i
imim1i
imim3i
sylc
syl3c
syl6mpi
mpsyl
mpsylsyld
syl6c
syl6ci
syldd
syl5d
syl7
syl6d
syl8
syl9
syl9r
syl10
a1ddd
imim12d
imim1d
imim1
pm2.83
peirceroll
com23
com3r
com13
com3l
pm2.04
com34
com4l
com4t
com4r
com24
com14
com45
com35
com25
com5l
com15
com52l
com52r
com5r
imim12
jarr
jarri
pm2.86d
pm2.86
pm2.86i
loolin
loowoz
Logical negation
con4
con4i
con4d
mt4
mt4d
mt4i
pm2.21i
pm2.24ii
pm2.21d
pm2.21ddALT
pm2.21
pm2.24
jarl
jarli
pm2.18d
pm2.18
pm2.18OLD
pm2.18dOLD
pm2.18i
notnotr
notnotri
notnotriALT
notnotrd
con2d
con2
mt2d
mt2i
nsyl3
con2i
nsyl
nsyl2
notnot
notnoti
notnotd
con1d
con1
con1i
mt3d
mt3i
nsyl2OLD
pm2.24i
pm2.24d
con3d
con3
con3i
con3rr3
nsyld
nsyli
nsyl4
nsyl5
pm3.2im
jc
jcn
jcnd
impi
expi
simprim
simplim
pm2.5g
pm2.5
conax1
conax1k
pm2.51
pm2.52
pm2.521g
pm2.521g2
pm2.521
expt
impt
pm2.61d
pm2.61d1
pm2.61d2
pm2.61i
pm2.61ii
pm2.61nii
pm2.61iii
ja
jad
pm2.61iOLD
pm2.01
pm2.01d
pm2.6
pm2.61
pm2.65
pm2.65i
pm2.21dd
pm2.65d
mto
mtod
mtoi
mt2
mt3
peirce
looinv
bijust0
bijust
Logical equivalence
wb
df-bi
impbi
impbii
impbidd
impbid21d
impbid
dfbi1
dfbi1ALT
biimp
biimpi
sylbi
sylib
sylbb
biimpr
bicom1
bicom
bicomd
bicomi
impbid1
impbid2
impcon4bid
biimpri
biimpd
mpbi
mpbir
mpbid
mpbii
sylibr
sylbir
sylbbr
sylbb1
sylbb2
sylibd
sylbid
mpbidi
syl5bi
syl5bir
syl5ib
syl5ibcom
syl5ibr
syl5ibrcom
biimprd
biimpcd
biimprcd
syl6ib
syl6ibr
syl6bi
syl6bir
syl7bi
syl8ib
mpbird
mpbiri
sylibrd
sylbird
biid
biidd
pm5.1im
2th
2thd
monothetic
ibi
ibir
ibd
pm5.74
pm5.74i
pm5.74ri
pm5.74d
pm5.74rd
bitri
bitr2i
bitr3i
bitr4i
bitrd
bitr2d
bitr3d
bitr4d
syl5bb
syl5rbb
bitr3id
bitr3di
bitrdi
bitr2di
bitr4di
bitr4id
3imtr3i
3imtr4i
3imtr3d
3imtr4d
3imtr3g
3imtr4g
3bitri
3bitrri
3bitr2i
3bitr2ri
3bitr3i
3bitr3ri
3bitr4i
3bitr4ri
3bitrd
3bitrrd
3bitr2d
3bitr2rd
3bitr3d
3bitr3rd
3bitr4d
3bitr4rd
3bitr3g
3bitr4g
notnotb
con34b
con4bid
notbid
notbi
notbii
con4bii
mtbi
mtbir
mtbid
mtbird
mtbii
mtbiri
sylnib
sylnibr
sylnbi
sylnbir
xchnxbi
xchnxbir
xchbinx
xchbinxr
imbi2i
jcndOLD
bibi2i
bibi1i
bibi12i
imbi2d
imbi1d
bibi2d
bibi1d
imbi12d
bibi12d
imbi12
imbi1
imbi2
imbi1i
imbi12i
bibi1
bitr3
con2bi
con2bid
con1bid
con1bii
con2bii
con1b
con2b
biimt
pm5.5
a1bi
mt2bi
mtt
imnot
pm5.501
ibib
ibibr
tbt
nbn2
bibif
nbn
nbn3
pm5.21im
2false
2falsed
2falsedOLD
pm5.21ni
pm5.21nii
pm5.21ndd
bija
pm5.18
xor3
nbbn
biass
biluk
pm5.19
bi2.04
pm5.4
imdi
pm5.41
pm4.8
pm4.81
imim21b
Logical conjunction
wa
df-an
pm4.63
pm4.67
imnan
imnani
iman
pm3.24
annim
pm4.61
pm4.65
imp
impcom
con3dimp
mpnanrd
impd
impcomd
ex
expcom
expdcom
expd
expcomd
imp31
imp32
exp31
exp32
imp4b
imp4a
imp4c
imp4d
imp41
imp42
imp43
imp44
imp45
exp4b
exp4a
exp4c
exp4d
exp41
exp42
exp43
exp44
exp45
imp5d
imp5a
imp5g
imp55
imp511
exp5c
exp5j
exp5l
exp53
pm3.3
pm3.31
impexp
impancom
expdimp
expimpd
impr
impl
expr
expl
ancoms
pm3.22
ancom
ancomd
biancomi
biancomd
ancomst
ancomsd
anasss
anassrs
anass
pm3.2
pm3.2i
pm3.21
pm3.43i
pm3.43
dfbi2
dfbi
biimpa
biimpar
biimpac
biimparc
adantr
adantl
simpl
simpli
simpr
simpri
intnan
intnanr
intnand
intnanrd
adantld
adantrd
pm3.41
pm3.42
simpld
simprd
simprbi
simplbi
simprbda
simplbda
simplbi2
simplbi2comt
simplbi2com
simpl2im
simplbiim
impel
mpan9
sylan9
sylan9r
sylan9bb
sylan9bbr
jca
jcad
jca2
jca31
jca32
jcai
jcab
pm4.76
jctil
jctir
jccir
jccil
jctl
jctr
jctild
jctird
iba
ibar
biantru
biantrur
biantrud
biantrurd
bianfi
bianfd
baib
baibr
rbaibr
rbaib
baibd
rbaibd
bianabs
pm5.44
pm5.42
ancl
anclb
ancr
ancrb
ancli
ancri
ancld
ancrd
impac
anc2l
anc2r
anc2li
anc2ri
pm4.71
pm4.71r
pm4.71i
pm4.71ri
pm4.71d
pm4.71rd
pm4.24
anidm
anidmdbi
anidms
imdistan
imdistani
imdistanri
imdistand
imdistanda
pm5.3
pm5.32
pm5.32i
pm5.32ri
pm5.32d
pm5.32rd
pm5.32da
sylan
sylanb
sylanbr
sylanbrc
syl2anc
syl2anc2
sylancl
sylancr
sylancom
sylanblc
sylanblrc
syldan
sylan2
sylan2b
sylan2br
syl2an
syl2anr
syl2anb
syl2anbr
sylancb
sylancbr
syldanl
syland
sylani
sylan2d
sylan2i
syl2ani
syl2and
anim12d
anim12d1
anim1d
anim2d
anim12i
anim12ci
anim1i
anim1ci
anim2i
anim12ii
anim12dan
im2anan9
im2anan9r
pm3.45
anbi2i
anbi1i
anbi2ci
anbi1ci
anbi12i
anbi12ci
anbi2d
anbi1d
anbi12d
anbi1
anbi2
anbi1cd
pm4.38
bi2anan9
bi2anan9r
bi2bian9
bianass
bianassc
an21
an12
an32
an13
an31
an12s
ancom2s
an13s
an32s
ancom1s
an31s
anass1rs
an4
an42
an43
an3
an4s
an42s
anabs1
anabs5
anabs7
anabsan
anabss1
anabss4
anabss5
anabsi5
anabsi6
anabsi7
anabsi8
anabss7
anabsan2
anabss3
anandi
anandir
anandis
anandirs
sylanl1
sylanl2
sylanr1
sylanr2
syl6an
syl2an2r
syl2an2
mpdan
mpancom
mpidan
mpan
mpan2
mp2an
mp4an
mpan2d
mpand
mpani
mpan2i
mp2ani
mp2and
mpanl1
mpanl2
mpanl12
mpanr1
mpanr2
mpanr12
mpanlr1
mpbirand
mpbiran2d
mpbiran
mpbiran2
mpbir2an
mpbi2and
mpbir2and
adantll
adantlr
adantrl
adantrr
adantlll
adantllr
adantlrl
adantlrr
adantrll
adantrlr
adantrrl
adantrrr
ad2antrr
ad2antlr
ad2antrl
ad2antll
ad3antrrr
ad3antlr
ad4antr
ad4antlr
ad5antr
ad5antlr
ad6antr
ad6antlr
ad7antr
ad7antlr
ad8antr
ad8antlr
ad9antr
ad9antlr
ad10antr
ad10antlr
ad2ant2l
ad2ant2r
ad2ant2lr
ad2ant2rl
adantl3r
ad4ant13
ad4ant14
ad4ant23
ad4ant24
adantl4r
ad5ant12
ad5ant13
ad5ant14
ad5ant15
ad5ant23
ad5ant24
ad5ant25
adantl5r
adantl6r
pm3.33
pm3.34
simpll
simplld
simplr
simplrd
simprl
simprld
simprr
simprrd
simplll
simpllr
simplrl
simplrr
simprll
simprlr
simprrl
simprrr
simp-4l
simp-4r
simp-5l
simp-5r
simp-6l
simp-6r
simp-7l
simp-7r
simp-8l
simp-8r
simp-9l
simp-9r
simp-10l
simp-10r
simp-11l
simp-11r
pm2.01da
pm2.18da
impbida
pm5.21nd
pm3.35
pm5.74da
bitr
biantr
pm4.14
pm3.37
anim12
pm3.4
exbiri
pm2.61ian
pm2.61dan
pm2.61ddan
pm2.61dda
mtand
pm2.65da
condan
biadan
biadani
biadaniALT
biadanii
pm5.1
pm5.21
pm5.35
abai
pm4.45im
impimprbi
nan
pm5.31
pm5.31r
pm4.15
pm5.36
annotanannot
pm5.33
syl12anc
syl21anc
syl22anc
syl1111anc
mpsyl4anc
pm4.87
bimsc1
a2and
animpimp2impd
Logical disjunction
wo
df-or
pm4.64
pm4.66
pm2.53
pm2.54
imor
imori
imorri
pm4.62
jaoi
jao1i
jaod
mpjaod
ori
orri
orrd
ord
orci
olci
orc
olc
pm1.4
orcom
orcomd
orcoms
orcd
olcd
orcs
olcs
olcnd
unitreslOLD
orcnd
mtord
pm3.2ni
pm2.45
pm2.46
pm2.47
pm2.48
pm2.49
norbi
nbior
orel1
pm2.25
orel2
pm2.67-2
pm2.67
curryax
exmid
exmidd
pm2.1
pm2.13
pm2.621
pm2.62
pm2.68
dfor2
pm2.07
pm1.2
oridm
pm4.25
pm2.4
pm2.41
orim12i
orim1i
orim2i
orim12dALT
orbi2i
orbi1i
orbi12i
orbi2d
orbi1d
orbi1
orbi12d
pm1.5
or12
orass
pm2.31
pm2.32
pm2.3
or32
or4
or42
orordi
orordir
orimdi
pm2.76
pm2.85
pm2.75
pm4.78
biort
biorf
biortn
biorfi
pm2.26
pm2.63
pm2.64
pm2.42
pm5.11g
pm5.11
pm5.12
pm5.14
pm5.13
pm5.55
pm4.72
imimorb
oibabs
orbidi
pm5.7
Mixed connectives
jaao
jaoa
jaoian
jaodan
mpjaodan
pm3.44
jao
jaob
pm4.77
pm3.48
orim12d
orim1d
orim2d
orim2
pm2.38
pm2.36
pm2.37
pm2.81
pm2.8
pm2.73
pm2.74
pm2.82
pm4.39
animorl
animorr
animorlr
animorrl
ianor
anor
ioran
pm4.52
pm4.53
pm4.54
pm4.55
pm4.56
oran
pm4.57
pm3.1
pm3.11
pm3.12
pm3.13
pm3.14
pm4.44
pm4.45
orabs
oranabs
pm5.61
pm5.6
orcanai
pm4.79
pm5.53
ordi
ordir
andi
andir
orddi
anddi
pm5.17
pm5.15
pm5.16
xor
nbi2
xordi
pm5.54
pm5.62
pm5.63
niabn
ninba
pm4.43
pm4.82
pm4.83
pclem6
bigolden
pm5.71
pm5.75
ecase2d
ecase3
ecase
ecase3d
ecased
ecase3ad
ccase
ccased
ccase2
4cases
4casesdan
cases
dedlem0a
dedlem0b
dedlema
dedlemb
cases2
cases2ALT
dfbi3
pm5.24
4exmid
consensus
pm4.42
prlem1
prlem2
oplem1
dn1
bianir
jaoi2
jaoi3
ornld
The conditional operator for propositions
wif
df-ifp
dfifp2
dfifp3
dfifp4
dfifp5
dfifp6
dfifp7
ifpdfbi
anifp
ifpor
ifpn
ifpnOLD
ifptru
ifpfal
ifpid
casesifp
ifpbi123d
ifpbi123dOLD
ifpbi23d
ifpimpda
1fpid3
The weak deduction theorem for propositional calculus
elimh
dedt
con3ALT
Abbreviated conjunction and disjunction of three wff's
w3o
w3a
df-3or
df-3an
3orass
3orel1
3orrot
3orcoma
3orcomb
3anass
3anan12
3anan32
3ancoma
3ancomb
3anrot
3anrev
anandi3
anandi3r
3anidm
3an4anass
3ioran
3ianor
3anor
3oran
3impa
3imp
3imp31
3imp231
3imp21
3impb
3impib
3impia
3expa
3exp
3expb
3expia
3expib
3com12
3com13
3comr
3com23
3coml
3jca
3jcad
3adant1
3adant2
3adant3
3ad2ant1
3ad2ant2
3ad2ant3
simp1
simp2
simp3
simp1i
simp2i
simp3i
simp1d
simp2d
simp3d
simp1bi
simp2bi
simp3bi
3simpa
3simpb
3simpc
3anim123i
3anim1i
3anim2i
3anim3i
3anbi123i
3orbi123i
3anbi1i
3anbi2i
3anbi3i
syl3an
syl3anb
syl3anbr
syl3an1
syl3an2
syl3an3
3adantl1
3adantl2
3adantl3
3adantr1
3adantr2
3adantr3
ad4ant123
ad4ant124
ad4ant134
ad4ant234
3adant1l
3adant1r
3adant2l
3adant2r
3adant3l
3adant3r
3adant3r1
3adant3r2
3adant3r3
3ad2antl1
3ad2antl2
3ad2antl3
3ad2antr1
3ad2antr2
3ad2antr3
simpl1
simpl2
simpl3
simpr1
simpr2
simpr3
simp1l
simp1r
simp2l
simp2r
simp3l
simp3r
simp11
simp12
simp13
simp21
simp22
simp23
simp31
simp32
simp33
simpll1
simpll2
simpll3
simplr1
simplr2
simplr3
simprl1
simprl2
simprl3
simprr1
simprr2
simprr3
simpl1l
simpl1r
simpl2l
simpl2r
simpl3l
simpl3r
simpr1l
simpr1r
simpr2l
simpr2r
simpr3l
simpr3r
simp1ll
simp1lr
simp1rl
simp1rr
simp2ll
simp2lr
simp2rl
simp2rr
simp3ll
simp3lr
simp3rl
simp3rr
simpl11
simpl12
simpl13
simpl21
simpl22
simpl23
simpl31
simpl32
simpl33
simpr11
simpr12
simpr13
simpr21
simpr22
simpr23
simpr31
simpr32
simpr33
simp1l1
simp1l2
simp1l3
simp1r1
simp1r2
simp1r3
simp2l1
simp2l2
simp2l3
simp2r1
simp2r2
simp2r3
simp3l1
simp3l2
simp3l3
simp3r1
simp3r2
simp3r3
simp11l
simp11r
simp12l
simp12r
simp13l
simp13r
simp21l
simp21r
simp22l
simp22r
simp23l
simp23r
simp31l
simp31r
simp32l
simp32r
simp33l
simp33r
simp111
simp112
simp113
simp121
simp122
simp123
simp131
simp132
simp133
simp211
simp212
simp213
simp221
simp222
simp223
simp231
simp232
simp233
simp311
simp312
simp313
simp321
simp322
simp323
simp331
simp332
simp333
3anibar
3mix1
3mix2
3mix3
3mix1i
3mix2i
3mix3i
3mix1d
3mix2d
3mix3d
3pm3.2i
pm3.2an3
mpbir3an
mpbir3and
syl3anbrc
syl21anbrc
3imp3i2an
ex3
3imp1
3impd
3imp2
3impdi
3impdir
3exp1
3expd
3exp2
exp5o
exp516
exp520
3impexp
3an1rs
3anassrs
ad5ant245
ad5ant234
ad5ant235
ad5ant123
ad5ant124
ad5ant125
ad5ant134
ad5ant135
ad5ant145
ad5ant2345
syl3anc
syl13anc
syl31anc
syl112anc
syl121anc
syl211anc
syl23anc
syl32anc
syl122anc
syl212anc
syl221anc
syl113anc
syl131anc
syl311anc
syl33anc
syl222anc
syl123anc
syl132anc
syl213anc
syl231anc
syl312anc
syl321anc
syl133anc
syl313anc
syl331anc
syl223anc
syl232anc
syl322anc
syl233anc
syl323anc
syl332anc
syl333anc
syl3an1b
syl3an2b
syl3an3b
syl3an1br
syl3an2br
syl3an3br
syld3an3
syld3an1
syld3an2
syl3anl1
syl3anl2
syl3anl3
syl3anl
syl3anr1
syl3anr2
syl3anr3
3anidm12
3anidm13
3anidm23
syl2an3an
syl2an23an
3ori
3jao
3jaob
3jaoi
3jaod
3jaoian
3jaodan
mpjao3dan
mpjao3danOLD
3jaao
syl3an9b
3orbi123d
3anbi123d
3anbi12d
3anbi13d
3anbi23d
3anbi1d
3anbi2d
3anbi3d
3anim123d
3orim123d
an6
3an6
3or6
mp3an1
mp3an2
mp3an3
mp3an12
mp3an13
mp3an23
mp3an1i
mp3anl1
mp3anl2
mp3anl3
mp3anr1
mp3anr2
mp3anr3
mp3an
mpd3an3
mpd3an23
mp3and
mp3an12i
mp3an2i
mp3an3an
mp3an2ani
biimp3a
biimp3ar
3anandis
3anandirs
ecase23d
3ecase
3bior1fd
3bior1fand
3bior2fd
3biant1d
intn3an1d
intn3an2d
intn3an3d
an3andi
an33rean
an33reanOLD
Logical "nand" (Sheffer stroke)
wnan
df-nan
nanan
nanimn
nanor
nancom
nannan
nanim
nannot
nanbi
nanbi1
nanbi2
nanbi12
nanbi1i
nanbi2i
nanbi12i
nanbi1d
nanbi2d
nanbi12d
nanass
Logical "xor"
wxo
df-xor
xnor
xorcom
xorcomOLD
xorass
excxor
xor2
xoror
xornan
xornan2
xorneg2
xorneg1
xorneg
xorbi12i
xorbi12iOLD
xorbi12d
anxordi
xorexmid
Logical "nor"
wnor
df-nor
norcom
norcomOLD
nornot
nornotOLD
noran
noranOLD
noror
nororOLD
norasslem1
norasslem2
norasslem3
norass
norassOLD
True and false constants
Universal quantifier for use by df-tru
Equality predicate for use by df-tru
The true constant
The false constant
Truth tables
Implication
Negation
Equivalence
Conjunction
Disjunction
Alternative denial
Exclusive disjunction
Joint denial
Half adder and full adder in propositional calculus
Full adder: sum
Full adder: carry