Metamath Proof Explorer


Theorem ancom

Description: Commutative law for conjunction. Theorem *4.3 of WhiteheadRussell p. 118. (Contributed by NM, 25-Jun-1998) (Proof shortened by Wolf Lammen, 4-Nov-2012)

Ref Expression
Assertion ancom φ ψ ψ φ

Proof

Step Hyp Ref Expression
1 pm3.22 φ ψ ψ φ
2 pm3.22 ψ φ φ ψ
3 1 2 impbii φ ψ ψ φ