Metamath Proof Explorer


Theorem syl6ci

Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012)

Ref Expression
Hypotheses syl6ci.1 φψχ
syl6ci.2 φθ
syl6ci.3 χθτ
Assertion syl6ci φψτ

Proof

Step Hyp Ref Expression
1 syl6ci.1 φψχ
2 syl6ci.2 φθ
3 syl6ci.3 χθτ
4 2 a1d φψθ
5 1 4 3 syl6c φψτ