Metamath Proof Explorer


Theorem syl6c

Description: Inference combining syl6 with contraction. (Contributed by Alan Sare, 2-May-2011)

Ref Expression
Hypotheses syl6c.1 φψχ
syl6c.2 φψθ
syl6c.3 χθτ
Assertion syl6c φψτ

Proof

Step Hyp Ref Expression
1 syl6c.1 φψχ
2 syl6c.2 φψθ
3 syl6c.3 χθτ
4 1 3 syl6 φψθτ
5 2 4 mpdd φψτ