Metamath Proof Explorer


Theorem impbid2

Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007) (Proof shortened by Wolf Lammen, 27-Sep-2013)

Ref Expression
Hypotheses impbid2.1 ψχ
impbid2.2 φχψ
Assertion impbid2 φψχ

Proof

Step Hyp Ref Expression
1 impbid2.1 ψχ
2 impbid2.2 φχψ
3 2 1 impbid1 φχψ
4 3 bicomd φψχ