Metamath Proof Explorer


Theorem impbid2

Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007) (Proof shortened by Wolf Lammen, 27-Sep-2013)

Ref Expression
Hypotheses impbid2.1 ( 𝜓𝜒 )
impbid2.2 ( 𝜑 → ( 𝜒𝜓 ) )
Assertion impbid2 ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 impbid2.1 ( 𝜓𝜒 )
2 impbid2.2 ( 𝜑 → ( 𝜒𝜓 ) )
3 2 1 impbid1 ( 𝜑 → ( 𝜒𝜓 ) )
4 3 bicomd ( 𝜑 → ( 𝜓𝜒 ) )