Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007) (Proof shortened by Wolf Lammen, 27-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | impbid2.1 | |- ( ps -> ch ) |
|
impbid2.2 | |- ( ph -> ( ch -> ps ) ) |
||
Assertion | impbid2 | |- ( ph -> ( ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid2.1 | |- ( ps -> ch ) |
|
2 | impbid2.2 | |- ( ph -> ( ch -> ps ) ) |
|
3 | 2 1 | impbid1 | |- ( ph -> ( ch <-> ps ) ) |
4 | 3 | bicomd | |- ( ph -> ( ps <-> ch ) ) |