Metamath Proof Explorer


Theorem impbid2

Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007) (Proof shortened by Wolf Lammen, 27-Sep-2013)

Ref Expression
Hypotheses impbid2.1
|- ( ps -> ch )
impbid2.2
|- ( ph -> ( ch -> ps ) )
Assertion impbid2
|- ( ph -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 impbid2.1
 |-  ( ps -> ch )
2 impbid2.2
 |-  ( ph -> ( ch -> ps ) )
3 2 1 impbid1
 |-  ( ph -> ( ch <-> ps ) )
4 3 bicomd
 |-  ( ph -> ( ps <-> ch ) )