Metamath Proof Explorer


Theorem impbid1

Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007)

Ref Expression
Hypotheses impbid1.1
|- ( ph -> ( ps -> ch ) )
impbid1.2
|- ( ch -> ps )
Assertion impbid1
|- ( ph -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 impbid1.1
 |-  ( ph -> ( ps -> ch ) )
2 impbid1.2
 |-  ( ch -> ps )
3 2 a1i
 |-  ( ph -> ( ch -> ps ) )
4 1 3 impbid
 |-  ( ph -> ( ps <-> ch ) )