Metamath Proof Explorer


Theorem anim12d

Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 3-Apr-1994) (Proof shortened by Wolf Lammen, 18-Dec-2013)

Ref Expression
Hypotheses anim12d.1 φψχ
anim12d.2 φθτ
Assertion anim12d φψθχτ

Proof

Step Hyp Ref Expression
1 anim12d.1 φψχ
2 anim12d.2 φθτ
3 idd φχτχτ
4 1 2 3 syl2and φψθχτ