Metamath Proof Explorer
		
		
		
		Description:  A syllogism deduction.  (Contributed by NM, 15-Dec-2004)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | syl2and.1 |  | 
					
						|  |  | syl2and.2 |  | 
					
						|  |  | syl2and.3 |  | 
				
					|  | Assertion | syl2and |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | syl2and.1 |  | 
						
							| 2 |  | syl2and.2 |  | 
						
							| 3 |  | syl2and.3 |  | 
						
							| 4 | 2 3 | sylan2d |  | 
						
							| 5 | 1 4 | syland |  |