Metamath Proof Explorer


Theorem sylan2d

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses sylan2d.1 φψχ
sylan2d.2 φθχτ
Assertion sylan2d φθψτ

Proof

Step Hyp Ref Expression
1 sylan2d.1 φψχ
2 sylan2d.2 φθχτ
3 2 ancomsd φχθτ
4 1 3 syland φψθτ
5 4 ancomsd φθψτ