Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylan2d.1 | |- ( ph -> ( ps -> ch ) )  | 
					|
| sylan2d.2 | |- ( ph -> ( ( th /\ ch ) -> ta ) )  | 
					||
| Assertion | sylan2d | |- ( ph -> ( ( th /\ ps ) -> ta ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sylan2d.1 | |- ( ph -> ( ps -> ch ) )  | 
						|
| 2 | sylan2d.2 | |- ( ph -> ( ( th /\ ch ) -> ta ) )  | 
						|
| 3 | 2 | ancomsd | |- ( ph -> ( ( ch /\ th ) -> ta ) )  | 
						
| 4 | 1 3 | syland | |- ( ph -> ( ( ps /\ th ) -> ta ) )  | 
						
| 5 | 4 | ancomsd | |- ( ph -> ( ( th /\ ps ) -> ta ) )  |