Metamath Proof Explorer


Theorem syl3anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 φ ψ
syl3anc.2 φ χ
syl3anc.3 φ θ
syl3anc.4 ψ χ θ τ
Assertion syl3anc φ τ

Proof

Step Hyp Ref Expression
1 syl3anc.1 φ ψ
2 syl3anc.2 φ χ
3 syl3anc.3 φ θ
4 syl3anc.4 ψ χ θ τ
5 1 2 3 3jca φ ψ χ θ
6 5 4 syl φ τ