Metamath Proof Explorer


Theorem 3jca

Description: Join consequents with conjunction. (Contributed by NM, 9-Apr-1994)

Ref Expression
Hypotheses 3jca.1 φ ψ
3jca.2 φ χ
3jca.3 φ θ
Assertion 3jca φ ψ χ θ

Proof

Step Hyp Ref Expression
1 3jca.1 φ ψ
2 3jca.2 φ χ
3 3jca.3 φ θ
4 1 2 3 jca31 φ ψ χ θ
5 df-3an ψ χ θ ψ χ θ
6 4 5 sylibr φ ψ χ θ