Metamath Proof Explorer


Theorem 3jca

Description: Join consequents with conjunction. (Contributed by NM, 9-Apr-1994)

Ref Expression
Hypotheses 3jca.1 φψ
3jca.2 φχ
3jca.3 φθ
Assertion 3jca φψχθ

Proof

Step Hyp Ref Expression
1 3jca.1 φψ
2 3jca.2 φχ
3 3jca.3 φθ
4 1 2 3 jca31 φψχθ
5 df-3an ψχθψχθ
6 4 5 sylibr φψχθ