Metamath Proof Explorer


Theorem sylibr

Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylibr.1 φψ
sylibr.2 χψ
Assertion sylibr φχ

Proof

Step Hyp Ref Expression
1 sylibr.1 φψ
2 sylibr.2 χψ
3 2 biimpri ψχ
4 1 3 syl φχ