Metamath Proof Explorer


Theorem sylibr

Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylibr.1
|- ( ph -> ps )
sylibr.2
|- ( ch <-> ps )
Assertion sylibr
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 sylibr.1
 |-  ( ph -> ps )
2 sylibr.2
 |-  ( ch <-> ps )
3 2 biimpri
 |-  ( ps -> ch )
4 1 3 syl
 |-  ( ph -> ch )