Description: Join consequents with conjunction. (Contributed by NM, 9-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3jca.1 | |- ( ph -> ps ) |
|
3jca.2 | |- ( ph -> ch ) |
||
3jca.3 | |- ( ph -> th ) |
||
Assertion | 3jca | |- ( ph -> ( ps /\ ch /\ th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jca.1 | |- ( ph -> ps ) |
|
2 | 3jca.2 | |- ( ph -> ch ) |
|
3 | 3jca.3 | |- ( ph -> th ) |
|
4 | 1 2 3 | jca31 | |- ( ph -> ( ( ps /\ ch ) /\ th ) ) |
5 | df-3an | |- ( ( ps /\ ch /\ th ) <-> ( ( ps /\ ch ) /\ th ) ) |
|
6 | 4 5 | sylibr | |- ( ph -> ( ps /\ ch /\ th ) ) |