Metamath Proof Explorer


Theorem 3jca

Description: Join consequents with conjunction. (Contributed by NM, 9-Apr-1994)

Ref Expression
Hypotheses 3jca.1
|- ( ph -> ps )
3jca.2
|- ( ph -> ch )
3jca.3
|- ( ph -> th )
Assertion 3jca
|- ( ph -> ( ps /\ ch /\ th ) )

Proof

Step Hyp Ref Expression
1 3jca.1
 |-  ( ph -> ps )
2 3jca.2
 |-  ( ph -> ch )
3 3jca.3
 |-  ( ph -> th )
4 1 2 3 jca31
 |-  ( ph -> ( ( ps /\ ch ) /\ th ) )
5 df-3an
 |-  ( ( ps /\ ch /\ th ) <-> ( ( ps /\ ch ) /\ th ) )
6 4 5 sylibr
 |-  ( ph -> ( ps /\ ch /\ th ) )