Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3jcad.1 | |- ( ph -> ( ps -> ch ) )  | 
					|
| 3jcad.2 | |- ( ph -> ( ps -> th ) )  | 
					||
| 3jcad.3 | |- ( ph -> ( ps -> ta ) )  | 
					||
| Assertion | 3jcad | |- ( ph -> ( ps -> ( ch /\ th /\ ta ) ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3jcad.1 | |- ( ph -> ( ps -> ch ) )  | 
						|
| 2 | 3jcad.2 | |- ( ph -> ( ps -> th ) )  | 
						|
| 3 | 3jcad.3 | |- ( ph -> ( ps -> ta ) )  | 
						|
| 4 | 1 | imp | |- ( ( ph /\ ps ) -> ch )  | 
						
| 5 | 2 | imp | |- ( ( ph /\ ps ) -> th )  | 
						
| 6 | 3 | imp | |- ( ( ph /\ ps ) -> ta )  | 
						
| 7 | 4 5 6 | 3jca | |- ( ( ph /\ ps ) -> ( ch /\ th /\ ta ) )  | 
						
| 8 | 7 | ex | |- ( ph -> ( ps -> ( ch /\ th /\ ta ) ) )  |