Metamath Proof Explorer
		
		
		
		Description:  Deduction conjoining the consequents of three implications.
       (Contributed by NM, 25-Sep-2005)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						3jcad.1 | 
						⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) )  | 
					
					
						 | 
						 | 
						3jcad.2 | 
						⊢ ( 𝜑  →  ( 𝜓  →  𝜃 ) )  | 
					
					
						 | 
						 | 
						3jcad.3 | 
						⊢ ( 𝜑  →  ( 𝜓  →  𝜏 ) )  | 
					
				
					 | 
					Assertion | 
					3jcad | 
					⊢  ( 𝜑  →  ( 𝜓  →  ( 𝜒  ∧  𝜃  ∧  𝜏 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							3jcad.1 | 
							⊢ ( 𝜑  →  ( 𝜓  →  𝜒 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							3jcad.2 | 
							⊢ ( 𝜑  →  ( 𝜓  →  𝜃 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							3jcad.3 | 
							⊢ ( 𝜑  →  ( 𝜓  →  𝜏 ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜒 )  | 
						
						
							| 5 | 
							
								2
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜃 )  | 
						
						
							| 6 | 
							
								3
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  𝜏 )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							3jca | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝜒  ∧  𝜃  ∧  𝜏 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝜓  →  ( 𝜒  ∧  𝜃  ∧  𝜏 ) ) )  |