Metamath Proof Explorer


Theorem syl3anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1
|- ( ph -> ps )
syl3anc.2
|- ( ph -> ch )
syl3anc.3
|- ( ph -> th )
syl3anc.4
|- ( ( ps /\ ch /\ th ) -> ta )
Assertion syl3anc
|- ( ph -> ta )

Proof

Step Hyp Ref Expression
1 syl3anc.1
 |-  ( ph -> ps )
2 syl3anc.2
 |-  ( ph -> ch )
3 syl3anc.3
 |-  ( ph -> th )
4 syl3anc.4
 |-  ( ( ps /\ ch /\ th ) -> ta )
5 1 2 3 3jca
 |-  ( ph -> ( ps /\ ch /\ th ) )
6 5 4 syl
 |-  ( ph -> ta )