Metamath Proof Explorer


Theorem syl3anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 ( 𝜑𝜓 )
syl3anc.2 ( 𝜑𝜒 )
syl3anc.3 ( 𝜑𝜃 )
syl3anc.4 ( ( 𝜓𝜒𝜃 ) → 𝜏 )
Assertion syl3anc ( 𝜑𝜏 )

Proof

Step Hyp Ref Expression
1 syl3anc.1 ( 𝜑𝜓 )
2 syl3anc.2 ( 𝜑𝜒 )
3 syl3anc.3 ( 𝜑𝜃 )
4 syl3anc.4 ( ( 𝜓𝜒𝜃 ) → 𝜏 )
5 1 2 3 3jca ( 𝜑 → ( 𝜓𝜒𝜃 ) )
6 5 4 syl ( 𝜑𝜏 )