Metamath Proof Explorer


Theorem syl13anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 ( 𝜑𝜓 )
syl3anc.2 ( 𝜑𝜒 )
syl3anc.3 ( 𝜑𝜃 )
syl3Xanc.4 ( 𝜑𝜏 )
syl13anc.5 ( ( 𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜂 )
Assertion syl13anc ( 𝜑𝜂 )

Proof

Step Hyp Ref Expression
1 syl3anc.1 ( 𝜑𝜓 )
2 syl3anc.2 ( 𝜑𝜒 )
3 syl3anc.3 ( 𝜑𝜃 )
4 syl3Xanc.4 ( 𝜑𝜏 )
5 syl13anc.5 ( ( 𝜓 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜂 )
6 2 3 4 3jca ( 𝜑 → ( 𝜒𝜃𝜏 ) )
7 1 6 5 syl2anc ( 𝜑𝜂 )