Metamath Proof Explorer


Theorem syl13anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1
|- ( ph -> ps )
syl3anc.2
|- ( ph -> ch )
syl3anc.3
|- ( ph -> th )
syl3Xanc.4
|- ( ph -> ta )
syl13anc.5
|- ( ( ps /\ ( ch /\ th /\ ta ) ) -> et )
Assertion syl13anc
|- ( ph -> et )

Proof

Step Hyp Ref Expression
1 syl3anc.1
 |-  ( ph -> ps )
2 syl3anc.2
 |-  ( ph -> ch )
3 syl3anc.3
 |-  ( ph -> th )
4 syl3Xanc.4
 |-  ( ph -> ta )
5 syl13anc.5
 |-  ( ( ps /\ ( ch /\ th /\ ta ) ) -> et )
6 2 3 4 3jca
 |-  ( ph -> ( ch /\ th /\ ta ) )
7 1 6 5 syl2anc
 |-  ( ph -> et )