Metamath Proof Explorer


Theorem syl13anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 φψ
syl3anc.2 φχ
syl3anc.3 φθ
syl3Xanc.4 φτ
syl13anc.5 ψχθτη
Assertion syl13anc φη

Proof

Step Hyp Ref Expression
1 syl3anc.1 φψ
2 syl3anc.2 φχ
3 syl3anc.3 φθ
4 syl3Xanc.4 φτ
5 syl13anc.5 ψχθτη
6 2 3 4 3jca φχθτ
7 1 6 5 syl2anc φη