Metamath Proof Explorer


Theorem syl13anc

Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012)

Ref Expression
Hypotheses syl3anc.1 φ ψ
syl3anc.2 φ χ
syl3anc.3 φ θ
syl3Xanc.4 φ τ
syl13anc.5 ψ χ θ τ η
Assertion syl13anc φ η

Proof

Step Hyp Ref Expression
1 syl3anc.1 φ ψ
2 syl3anc.2 φ χ
3 syl3anc.3 φ θ
4 syl3Xanc.4 φ τ
5 syl13anc.5 ψ χ θ τ η
6 2 3 4 3jca φ χ θ τ
7 1 6 5 syl2anc φ η