Metamath Proof Explorer


Theorem syl2anc

Description: Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012)

Ref Expression
Hypotheses syl2anc.1 φψ
syl2anc.2 φχ
syl2anc.3 ψχθ
Assertion syl2anc φθ

Proof

Step Hyp Ref Expression
1 syl2anc.1 φψ
2 syl2anc.2 φχ
3 syl2anc.3 ψχθ
4 3 ex ψχθ
5 1 2 4 sylc φθ