Metamath Proof Explorer


Theorem syl2anc

Description: Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012)

Ref Expression
Hypotheses syl2anc.1
|- ( ph -> ps )
syl2anc.2
|- ( ph -> ch )
syl2anc.3
|- ( ( ps /\ ch ) -> th )
Assertion syl2anc
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 syl2anc.1
 |-  ( ph -> ps )
2 syl2anc.2
 |-  ( ph -> ch )
3 syl2anc.3
 |-  ( ( ps /\ ch ) -> th )
4 3 ex
 |-  ( ps -> ( ch -> th ) )
5 1 2 4 sylc
 |-  ( ph -> th )