Metamath Proof Explorer


Theorem syl2anc2

Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023)

Ref Expression
Hypotheses syl2anc2.1 φ ψ
syl2anc2.2 ψ χ
syl2anc2.3 ψ χ θ
Assertion syl2anc2 φ θ

Proof

Step Hyp Ref Expression
1 syl2anc2.1 φ ψ
2 syl2anc2.2 ψ χ
3 syl2anc2.3 ψ χ θ
4 1 2 syl φ χ
5 1 4 3 syl2anc φ θ