Metamath Proof Explorer


Theorem syl2anc2

Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023)

Ref Expression
Hypotheses syl2anc2.1 φψ
syl2anc2.2 ψχ
syl2anc2.3 ψχθ
Assertion syl2anc2 φθ

Proof

Step Hyp Ref Expression
1 syl2anc2.1 φψ
2 syl2anc2.2 ψχ
3 syl2anc2.3 ψχθ
4 1 2 syl φχ
5 1 4 3 syl2anc φθ