Metamath Proof Explorer
Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023)
|
|
Ref |
Expression |
|
Hypotheses |
syl2anc2.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl2anc2.2 |
⊢ ( 𝜓 → 𝜒 ) |
|
|
syl2anc2.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
|
Assertion |
syl2anc2 |
⊢ ( 𝜑 → 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl2anc2.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl2anc2.2 |
⊢ ( 𝜓 → 𝜒 ) |
3 |
|
syl2anc2.3 |
⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) |
4 |
1 2
|
syl |
⊢ ( 𝜑 → 𝜒 ) |
5 |
1 4 3
|
syl2anc |
⊢ ( 𝜑 → 𝜃 ) |