Metamath Proof Explorer


Theorem syl2anc2

Description: Double syllogism inference combined with contraction. (Contributed by BTernaryTau, 29-Sep-2023)

Ref Expression
Hypotheses syl2anc2.1 ( 𝜑𝜓 )
syl2anc2.2 ( 𝜓𝜒 )
syl2anc2.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion syl2anc2 ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 syl2anc2.1 ( 𝜑𝜓 )
2 syl2anc2.2 ( 𝜓𝜒 )
3 syl2anc2.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 1 2 syl ( 𝜑𝜒 )
5 1 4 3 syl2anc ( 𝜑𝜃 )