Metamath Proof Explorer


Theorem sylancl

Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylancl.1 ( 𝜑𝜓 )
sylancl.2 𝜒
sylancl.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylancl ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 sylancl.1 ( 𝜑𝜓 )
2 sylancl.2 𝜒
3 sylancl.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 2 a1i ( 𝜑𝜒 )
5 1 4 3 syl2anc ( 𝜑𝜃 )