Metamath Proof Explorer


Theorem sylancr

Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylancr.1 𝜓
sylancr.2 ( 𝜑𝜒 )
sylancr.3 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylancr ( 𝜑𝜃 )

Proof

Step Hyp Ref Expression
1 sylancr.1 𝜓
2 sylancr.2 ( 𝜑𝜒 )
3 sylancr.3 ( ( 𝜓𝜒 ) → 𝜃 )
4 1 a1i ( 𝜑𝜓 )
5 4 2 3 syl2anc ( 𝜑𝜃 )