Metamath Proof Explorer


Theorem sylancr

Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylancr.1
|- ps
sylancr.2
|- ( ph -> ch )
sylancr.3
|- ( ( ps /\ ch ) -> th )
Assertion sylancr
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 sylancr.1
 |-  ps
2 sylancr.2
 |-  ( ph -> ch )
3 sylancr.3
 |-  ( ( ps /\ ch ) -> th )
4 1 a1i
 |-  ( ph -> ps )
5 4 2 3 syl2anc
 |-  ( ph -> th )