Metamath Proof Explorer


Theorem sylancom

Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 2-Jul-2008)

Ref Expression
Hypotheses sylancom.1
|- ( ( ph /\ ps ) -> ch )
sylancom.2
|- ( ( ch /\ ps ) -> th )
Assertion sylancom
|- ( ( ph /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 sylancom.1
 |-  ( ( ph /\ ps ) -> ch )
2 sylancom.2
 |-  ( ( ch /\ ps ) -> th )
3 simpr
 |-  ( ( ph /\ ps ) -> ps )
4 1 3 2 syl2anc
 |-  ( ( ph /\ ps ) -> th )