Metamath Proof Explorer


Theorem sylancom

Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 2-Jul-2008)

Ref Expression
Hypotheses sylancom.1 φ ψ χ
sylancom.2 χ ψ θ
Assertion sylancom φ ψ θ

Proof

Step Hyp Ref Expression
1 sylancom.1 φ ψ χ
2 sylancom.2 χ ψ θ
3 simpr φ ψ ψ
4 1 3 2 syl2anc φ ψ θ