Metamath Proof Explorer


Theorem simpll2

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 23-Jun-2022)

Ref Expression
Assertion simpll2 φψχθτψ

Proof

Step Hyp Ref Expression
1 simp2 φψχψ
2 1 ad2antrr φψχθτψ