Metamath Proof Explorer


Theorem ad2antrr

Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999) (Proof shortened by Wolf Lammen, 20-Nov-2012)

Ref Expression
Hypothesis ad2ant.1 φψ
Assertion ad2antrr φχθψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φψ
2 1 adantr φθψ
3 2 adantlr φχθψ