Description: Deduction adding two conjuncts to antecedent. (Contributed by NM, 19-Oct-1999) (Proof shortened by Wolf Lammen, 20-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad2ant.1 | |- ( ph -> ps ) |
|
Assertion | ad2antrr | |- ( ( ( ph /\ ch ) /\ th ) -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | |- ( ph -> ps ) |
|
2 | 1 | adantr | |- ( ( ph /\ th ) -> ps ) |
3 | 2 | adantlr | |- ( ( ( ph /\ ch ) /\ th ) -> ps ) |