Metamath Proof Explorer


Theorem adantr

Description: Inference adding a conjunct to the right of an antecedent. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis adantr.1 φψ
Assertion adantr φχψ

Proof

Step Hyp Ref Expression
1 adantr.1 φψ
2 1 a1d φχψ
3 2 imp φχψ