Metamath Proof Explorer


Theorem adantl

Description: Inference adding a conjunct to the left of an antecedent. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 23-Nov-2012)

Ref Expression
Hypothesis adantl.1 φψ
Assertion adantl χφψ

Proof

Step Hyp Ref Expression
1 adantl.1 φψ
2 1 adantr φχψ
3 2 ancoms χφψ