Metamath Proof Explorer


Theorem adantl

Description: Inference adding a conjunct to the left of an antecedent. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 23-Nov-2012)

Ref Expression
Hypothesis adantl.1
|- ( ph -> ps )
Assertion adantl
|- ( ( ch /\ ph ) -> ps )

Proof

Step Hyp Ref Expression
1 adantl.1
 |-  ( ph -> ps )
2 1 adantr
 |-  ( ( ph /\ ch ) -> ps )
3 2 ancoms
 |-  ( ( ch /\ ph ) -> ps )