Metamath Proof Explorer


Theorem imp

Description: Importation inference. (Contributed by NM, 3-Jan-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)

Ref Expression
Hypothesis imp.1 φψχ
Assertion imp φψχ

Proof

Step Hyp Ref Expression
1 imp.1 φψχ
2 df-an φψ¬φ¬ψ
3 1 impi ¬φ¬ψχ
4 2 3 sylbi φψχ