Metamath Proof Explorer


Theorem adantr

Description: Inference adding a conjunct to the right of an antecedent. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis adantr.1 ( 𝜑𝜓 )
Assertion adantr ( ( 𝜑𝜒 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 adantr.1 ( 𝜑𝜓 )
2 1 a1d ( 𝜑 → ( 𝜒𝜓 ) )
3 2 imp ( ( 𝜑𝜒 ) → 𝜓 )