Metamath Proof Explorer


Theorem nsyl4

Description: A negated syllogism inference. (Contributed by NM, 15-Feb-1996)

Ref Expression
Hypotheses nsyl4.1 φψ
nsyl4.2 ¬φχ
Assertion nsyl4 ¬χψ

Proof

Step Hyp Ref Expression
1 nsyl4.1 φψ
2 nsyl4.2 ¬φχ
3 2 con1i ¬χφ
4 3 1 syl ¬χψ