Metamath Proof Explorer
Table of Contents - 1.2.4. Logical negation
This section makes our first use of the third axiom of propositional
calculus, ax-3. It introduces logical negation.
- con4
- con4i
- con4d
- mt4
- mt4d
- mt4i
- pm2.21i
- pm2.24ii
- pm2.21d
- pm2.21ddALT
- pm2.21
- pm2.24
- jarl
- jarli
- pm2.18d
- pm2.18
- pm2.18OLD
- pm2.18dOLD
- pm2.18i
- notnotr
- notnotri
- notnotriALT
- notnotrd
- con2d
- con2
- mt2d
- mt2i
- nsyl3
- con2i
- nsyl
- nsyl2
- notnot
- notnoti
- notnotd
- con1d
- con1
- con1i
- mt3d
- mt3i
- nsyl2OLD
- pm2.24i
- pm2.24d
- con3d
- con3
- con3i
- con3rr3
- nsyld
- nsyli
- nsyl4
- nsyl5
- pm3.2im
- jc
- jcn
- jcnd
- impi
- expi
- simprim
- simplim
- pm2.5g
- pm2.5
- conax1
- conax1k
- pm2.51
- pm2.52
- pm2.521g
- pm2.521g2
- pm2.521
- expt
- impt
- pm2.61d
- pm2.61d1
- pm2.61d2
- pm2.61i
- pm2.61ii
- pm2.61nii
- pm2.61iii
- ja
- jad
- pm2.61iOLD
- pm2.01
- pm2.01d
- pm2.6
- pm2.61
- pm2.65
- pm2.65i
- pm2.21dd
- pm2.65d
- mto
- mtod
- mtoi
- mt2
- mt3
- peirce
- looinv
- bijust0
- bijust